Конспект занятия по фэмп в средней группе «счет пределах 3»
Содержание:
- Таблица сложения и вычитания скачать бесплатно
- Устный счет с опорой на состав числа
- Основные операции в математике
- Полезные советы
- Вычитание вида 12 — □
- Считаем и решаем примеры до 20
- Рекомендации родителям
- Алгоритм работы онлайн-калькулятора на примерах
- Как научить решать примеры в уме?
- Приемы сложения и вычитания вида□ + 6, 7, 8, 9, □–6, 7, 8, 9
- Числовой луч
- Двузначные числа и их запись
Таблица сложения и вычитания скачать бесплатно
Во время обучения ребенка счету до 20 вам однозначно понадобится и такая таблица сложения и вычитания, скачать которую вы можете во вложениях внизу страницы. Пользоваться ей очень просто: на таблице мы отметили стрелочками, какие действия необходимо совершить, чтобы прибавить два числа, а также, каким образом, с помощью этой же таблицы, можно от одного числа отнять другое.
Сложение: проводим мысленно от чисел в серых прямоугольниках, которые мы хотим сложить, линии, перпендикулярно друг другу, до пересечения. Цифра, которая находится на месте пересечения и будет являться нашим ответом.
Вычитание: проводим действие в обратном порядке. От выбранного числа, находящегося в середине таблицы, проводим линии, перпендикулярные друг другу, к числам в серых прямоугольниках. Одно число будет являться вычитаемым, а другое разницей.
Здесь мы считаем до 20, используя карточки с числами. На каждом листе-карточке расположено число от 1 до 20 и различные предметы, количество которых равняется данному числу.
В этих занимательных задачках мы учимся считать до 20 вместе с героями мультиков и сказок. Дети дошкольного возраста совершенно не любят однообразие и скуку.
В этом материале дети узнают, что такое четные и нечетные числа от 1 до 20 и научатся различать их, выполняя различные задания в картинках.
Здесь мы подготовили для вас устный счет в пределах 10 в виде математических заданий в картинках. Данные задания формируют у детей навыки счета и способствуют более эффективному обучению простых математических действий.
Чтобы дети могли быстро и с интересом освоить счет в пределах 10, мы подготовили для вас веселые раскраски с заданиями. Каждое задание содержит в себе картинки для раскрашивания — это стимулирует ребенка правильно выполнить задание.
Здесь вы можете скачать прописи цифры, распечатать их на принтере и использовать в домашнем обучении для подготовки детей к школе
В этой игре малыш должен посчитать количество предметов на игровом экране и нажать на соответствующее число. После этого он увидит и услышит порядковый счет до данного числа.
Здесь ребенку нужно быть внимательным, чтобы найти все спрятанные числа на картинке. В игре также используется порядковый счет.
В этой игре ребенку необходимо выбрать среди предложенных чисел самое большое или самое маленькое.
Представляем вашему вниманию еще одну развивающую математическую игру «Сложение и вычитание до 10» для детей раннего возраста от Лисенка Бибуши
Математическая онлайн игра «Задачи-примеры для малышей в картинках» состоит из восьми задачек и подойдет детям, которые учатся считать до 10.
Устный счет с опорой на состав числа
Зная состав числа, ребенок может устно выполнить действия по сложению и вычитанию. Понимая, например, что число 8 состоит из 5 и 3, или 1 и 7, или 6 и 2, или 4 и 4, он может не задумываясь решать задачи на сложение и вычитание с этим числом.
Для лучшего запоминания рекомендуется решать с ребенком несложные задания:
- Раскладывать в 2 коробки определенное количество предметов (например, взять 8 горошин и разложить их в разных вариантах: 5+3, 1+7 и т.д.). Предметы нужно постоянно менять, чтобы у ребенка не пропал интерес.
- Предложить ребенку дополнить число до нужного. Например, повесить на елку 5 игрушек и попросить дополнить елку до 8 игрушек и т.д.
Дальше нужно усложнять задачу и решать примеры “выходящие” за десяток, например 8+5. Для этого нужно:
- Дополнить первое слагаемое до 10. То есть, ребенок уже знает, что 10=8+2. То есть, ему нужно из второго слагаемого “забрать” число 2.
- Он вычисляет, сколько еще нужно добавить (на основе знания состава числа 5 = 2+3);
- Высчитать 8+2+3=13,
Такой же прием (доведение до 10) ребенок будет применять и при вычитании.
Освоив эти способы, ребенок в дальнейшем будет использовать их при решении примеров с числами в пределах 100 и 1000.
Сложение и вычитание
Умение складывать и вычитать вырабатывается обычно к пяти годам. Сначала это следует делать с помощью различных предметов, затем тренироваться решать простейшие примеры в уме. При обучении счету постепенно нужно вводить несложные примеры на сложение и вычитание. Решать примеры столбиком еще рано, но складывать однозначные числа вполне можно научить.
Заниматься математикой с малышом необходимо так, чтобы он не растерял интерес. Поэтому никаких скучных примеров по типу «3+5=? » быть не может. Учим, завлекая, наглядно. Можно в шуточной форме.
Начинать нужно с простого. К примеру, прибавлять к каждой известной цифре единицу и ее же вычитать. Стоит использовать при этом предметы, интересные ребенку или важные для него. Пример представлять лучше в виде вопроса: «У тебя две печеньки. Одной ты поделишься с мамой. Сколько останется у тебя? » И все в таком же духе.
Чтобы переходить к вычитанию, убедитесь, что малыш хорошо освоил сложение. Используйте примеры сложения и вычитания не только на занятиях, но и на прогулке, в магазине, за обедом, при уборке комнаты. Пусть ребенок проговаривает вслед за вами условие задачки. Пользуйтесь специальными пособиями и дидактическими материалами с несложными упражнениями
Обращайте внимание на наличие ярких иллюстраций. Не забываем – ребенка нужно завлечь
Чтобы легко складывать и вычитать, малышу необходимо изучить состав числа. Он должен усвоить, что 5 состоит из цифр 2 и 3, 1 и 4, 10 – из цифр 1 и 9, 2 и 8 и так далее. Перед тем, как научиться правильно считать в уме, ребенок должен хорошо решать задачки с наглядными материалами или на пальцах. Начинать обучение счету про себя лучше с 4 лет, не раньше. С этого возраста время, отведенное на сложение и вычитание, сказывается на общем развитии.
Важно усвоить понятия «больше», «меньше». Пролистывая обучающие книжки, можно спрашивать, каких животных на странице больше, какого цвета меньше
Также нужно выучить термин «поровну». Обязательно нужно объяснить ребенку, что от перемены мест слагаемых сумма не меняется.
Примеры интересных закономерностей
Задания на поиск закономерностей отлично мотивируют детей быстрее освоить арифметику и перейти к заданиям посложнее.
Найди закономерность и определи, какое число спрятал четвёртый робот?
Какое число будет следующим в этом ряду?
Задания на логику гораздо интереснее арифметических тренажёров.
Основные операции в математике
Основные операции, которые используют в математике — это сложение, вычитание, умножение и деление. Помимо этих операций есть ещё операции отношения, такие как равно (=), больше (>), меньше (<), больше или равно (≥), меньше или равно (≤), не равно (≠).
Операции действия:
- сложение (+)
- вычитание (-)
- умножение (*)
- деление (:)
Операции отношения:
- равно (=)
- больше (>)
- меньше (<)
- больше или равно (≥)
- меньше или равно (≤)
- не равно (≠)
Сложение — операция, которая позволяет объединить два слагаемых.
Запись сложения: 5 + 1 = 6, где 5 и 1 — слагаемые, 6 — сумма.
Вычитание — действие, обратное сложению.
Запись вычитания: 10 — 1 = 9, где 10 — уменьшаемое, 1 — вычитаемое, 9 — разность.
Если разность 9, сложить с вычитаемым 1, то получится уменьшаемое 10. Операция сложения 9 + 1 = 10 является контрольной проверкой вычитания 10 — 1 = 9.
Умножение — арифметическое действие в виде краткой записи суммы одинаковых слагаемых.
- Запись: 3 * 4 = 12, где 3 — множимое, 4 — множитель, 12 — произведение.
- 3 * 4 = 3 + 3 + 3 + 3
В случае, если множимое и множитель поменять ролями, произведение остается одним и тем же. Например: 5 * 2 = 5 + 5 = 10.
Поэтому и множитель, и множимое называют сомножителями.
Деление — арифметическое действие обратное умножению.
Запись: 30 : 6 = 5 или 30/6 = 5, где 30 — делимое, 6 — делитель, 5 — частное.
В этом случае произведение делителя 6 и частного 5, в качестве проверки, дает делимое 30.
Если в результате операции деления, частное является не целым числом, то его можно представить в виде дроби.
Возведение степень — операция умножения числа на самого себя несколько раз.
Основание степени — число, которое повторяется сомножителем определённое количество раз.
Показатель степени — число, которое указывает, сколько раз берется одинаковый множитель.
Степенью называется число, которое получается в результате взаимодействия основания и показателя степени.
- Запись: 34 = 81, где 3 — основание степени, 4 — показатель степени, 81 — степень.
- 3^4 = 3 * 3 * 3 * 3
Вторая степень называется квадратом, третья степень — кубом. Первой степенью числа называют само это число.
Извлечение корня — арифметическое действие, обратное возведению в степень.
- Запись: 4√81 = 3, где 81 — подкоренное число, 4 — показатель корня, 3 — корень.
- З^4 = 81 — возведение числа 3 в четвертую степень дает 81 (проверка извлечения корня).
- 2√16 = 4 — корень второй степени называется — квадратным.
При знаке квадратного корня показатель корня принято опускать: √16 = 4.
3√8 = 2 — корень третьей степени называется — кубическим.
Сложение и вычитание, умножение и деление, возведение в степень и извлечение корня попарно представляют обратные друг другу действия. Далее узнаем порядок выполнения арифметических действий.
Полезные советы
В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:
- Не забывайте тренироваться каждый день;
- не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
- скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
- почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.
Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!
Вычитание вида 12 — □
Перейдем к составлению следующей таблицы. В ней примеры на вычитание вида 12- □. Поэтому мы начнем с анализа уменьшаемого.
На полках стояло 12 пирамидок.
На картинке хорошо виден разрядный состав числа 12. В нем 1 десяток и 2 единицы. Вот мы и получили первое число, которое должно входить в состав вычитаемого – это 2.
Подружки купили 3 пирамидки. Вот какой получится пример.
Продолжим вычитание с уменьшаемым 12.
Определиться с составом числа 5 нам поможет домино с пятью кружочками. Слева должно быть два кружочка. Тогда справа нужно дорисовать третий, четвертый и пятый кружок.
Итак, посмотрим, какие примеры мы решили.
Хорошо их запомни. Так тебе будет легче составлять остальную часть таблицы. Помнишь, как мы катались на качелях? Давай и сейчас сделаем тоже. Кстати, перед тем как решать примеры, можешь выполнить небольшую физминутку: несколько раз приседай и поднимайся на носочки.
Если ты уже отдохнул, то приступай. Проверь свои результаты.
Мы закончили с таблицей вычитания вида 12 — □. Можем продолжать.
Считаем и решаем примеры до 20
Когда счет до 10 был освоен и ребенок стал свободно ориентироваться в первой десятке цифр, наступает время переходить на новый этап и обучаться двузначным числам, считать примеры в пределах 20.
Запоминаем цифры
Чтобы ребенок хорошо запоминал последовательность цифр, лучше всего использовать 20 одинаковых предметов (это даст возможность наглядно все объяснять малышу) или опять же карточки с числами.
Выглядеть это будет так:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Поясняем ребенку, что в числах после 10 есть сходство. Визуализируя таким образом числа и десятки, вы поможете ребенку эффективнее запомнить их последовательность и названия. Видим число 11 – говорим «один» и прибавляем окончание «надцать». Так же поступаем и с другими двузначными числами – «три-надцать», «пять-надцать», «шесть-надцать» и т. д.
Работайте с ребенком на повторение, пока он не запомнит названия чисел.
Решаем примеры
Прежде чем приступить к решению примеров и обучению в пределах двадцати, дошкольник должен уяснить такие понятия, как «десятки» и «единицы». Для начального этапа обучения можно использовать кубики, палочки или попробовать учиться на счетах, а потом уже приучать малыша считать в уме. В возрасте 5 или 6 лет он должен уметь считать без помощи пальцев и других посторонних предметов.
Для первых занятий лучше использовать такие упражнения для детей, в которых не нужно совершать вычисления с переходом через десяток. Подойдут примеры, где все математические действия происходят с целым десятком или десятками и с некоторым количеством единиц, которые прибавляются либо вычитаются.
То есть десяток – основа всего примера.
Сложите кубики, палочки или другие предметы, с которыми вы работаете, по порядку в количестве 10 штук. Объясните малышу, что это десяток. Потом попросите прибавить к этому количеству еще несколько предметов, допустим 4. Говорите: «Десять плюс четыре равно четырнадцать». После того, как вы научили ребенка складывать, подобным образом составьте примеры с вычитанием, например:
18-8=10
13-10=3 и т. д.
Следующий этап – вычисления с переходом через десяток. Такие примеры даются ребятам несколько сложнее. Здесь уже понадобятся знания не только целых десятков и отдельных единиц, но и общее представление состава отдельного числа.
- Из чего состоит число 3? Из 1 и 2, или 1 и 1 и 1.
- А что такое 7? Это 1+6= 2+5= 1+1+1+4 и т. д.
Подобным образом поступите со всеми числами, которые знает ребенок, разберите их на составляющие части. Потом эти знания хорошо применить в решении примеров.
Разберем такой пример:
4+9=
Второе слагаемое раскладываем на два составляющих числа, чтобы при сложении с первым слагаемым получить десятку, а потом прибавляем остаток:
4+(6+3)= 10+3=13, т. е. 4+9= 13
Закрепим знания еще несколькими примерами:
5+7=
5+(5+2)= 10+2= 12
или
8+9=
8+(2+7)= 10+7= 17
Таким же образом можно решать примеры с вычитанием:
16-7=
16-(6-1)= 10-1= 9
или
13-8=
13-(3-5)= 10-5= 5
То есть для того чтобы сделать вычисление, раскладываем второе слагаемое таким образом, чтобы при вычитании из первого слагаемого получилась десятка, а потом вычитаем оставшееся число.
Также удобно показать малышу работу со сложением и вычитанием в столбик. В таких примерах нагляднее видно десятки и единицы, что с чем складывать или вычитать.
Напоследок несколько рекомендаций родителям.
- Во время занятий математикой проявите терпение к своему маленькому ученику и не раздражайтесь от его непонимания, а тем более не кричите.
- Не давите на ребенка и не заставляйте заниматься, если ему не хочется. Отпустите его, ведь он все равно не сконцентрируется. А в следующий раз придумайте, как его заинтересовать занятиями.
- Контролируйте время занятий, не держите малыша часами за решением примера. 10-20 минут должно длиться одно занятие. Дети быстро теряют концентрацию, и долговременные занятия нельзя назвать эффективными.
- На досуге между делом постоянно тренируйтесь с малышом. Когда режете торт, считайте, сколько кусков получилось, когда сервируете стол, посчитайте количество гостей и попросите принести нужное количество тарелок и т. д.
Главное одно – спокойная обстановка, терпение и родительская любовь однажды все равно дадут положительный результат. Не равняйтесь на других, а занимайтесь своим ребенком. Помните, что все дети разные и всем нужен индивидуальный подход.
Рекомендации родителям
Не стоит рассчитывать, что эти простые истины математики дадутся ребенку с легкостью. Даже если соседская девочка или сын сотрудницы освоил сложение и вычитание за один день, это не повод впадать в отчаяние. Во-первых, все дети разные и у всех индивидуальные особенности усвоения информации, а во-вторых, если кто-то что-то освоил быстрее, еще не значит, что учиться ему будет легче.
Кроме того, при обучении малыша родителям нужно следить за реакцией ребенка на это обучение. Если вы видите, что ему не интересно, попробуйте сменить тактику. Считайте конфеты, яблоки, книжки, можно вырезать одинаковые фигурки для обучения, а затем сделать из них праздничную гирлянду.
Если в определенный период времени ребенок отказывается учиться, у него плохое настроение или самочувствие, не настаивайте. Перенесите время урока на более благоприятный период. Зато у малыша не пропадет желание к учебе, как к чему-то неприятному и неизбежному. Ну и самое главное, проявляйте терпение к его стараниям и почаще хвалите
Для него это очень важно
Алгоритм работы онлайн-калькулятора на примерах
Сложение.
Пример:
Сложение целых натуральных чисел { 5 + 7 = 12 }
Сложение целых натуральных и отрицательных чисел { 5 + (-2) = 3 }
Сложение десятичных дробных чисел { 0,3 + 5,2 = 5,5 }
Вычитание.
Пример:
Вычитание целых натуральных чисел { 7 — 5 = 2 }
Вычитание целых натуральных и отрицательных чисел { 5 — (-2) = 7 }
Вычитание десятичных дробных чисел { 6,5 — 1,2 = 4,3 }
Умножение.
Пример:
Произведение целых натуральных чисел { 3 * 7 = 21 }
Произведение целых натуральных и отрицательных чисел { 5 * (-3) = -15 }
Произведение десятичных дробных чисел { 0,5 * 0,6 = 0,3 }
Деление.
Пример:
Деление целых натуральных чисел { 27 / 3 = 9 }
Деление целых натуральных и отрицательных чисел { 15 / (-3) = -5 }
Деление десятичных дробных чисел { 6,2 / 2 = 3,1 }
Извлечение корня из числа.
Пример:
Извлечение корня из целого числа { корень(9) = 3 }
Извлечение корня из десятичных дробей { корень(2,5) = 1,58 }
Извлечение корня из суммы чисел { корень(56 + 25) = 9 }
Извлечение корня из разницы чисел { корень (32 – 7) = 5 }
Пример:
Возведение в квадрат целого числа { (3) 2 = 9 }
Возведение в квадрат десятичных дробей { (2,2) 2 = 4,84 }
Пример:
{ 1/3 = 0,33 }
{ ½ = 0,5 }
Вычисление процентов от числа
Пример:
Увеличить на 15% число 230 { 230 + 230 * 0,15 = 264,5 }
Уменьшить на 35% число 510 { 510 – 510 * 0,35 =331,5 }
18% от числа 140 это { 140 * 0,18 = 25,2 }
Как научить решать примеры в уме?
Для облегчения устного счета эффективны упражнения для ежедневной тренировки. К шести годам детвора может самостоятельно сосчитать количество конфет, кубиков или мячиков. Им не нужно использовать свои пальчики. Родителям необходимо вовремя подсказать, направить малыша для формирования навыков решения примеров в уме. Ребенок должен освоить:
- простейший счет;
- сумму и разность;
- различие между «большим» или «меньшим» значением.
Визуальное восприятие счета – решение в столбик поможет быстрее научиться считать устно. Педагоги начального обучения рекомендуют начинать с простого. Сосчитать количество фруктов, от ребенка нужно услышать итоговый ответ, без проговаривания последовательных цифр числового ряда.
Несколько уроков, и малыш поймет, что можно сразу называть сумму. Для усложнения спрашивают, а если добавить еще три груши, сколько всего будет фруктов. «Добавки» не должно быть перед глазами. Юному счетоводу придется представить в уме и дать правильный ответ.
Прибавляем в уме
Следует устно повторять примеры на состав, учитывая все возможные двузначные пары. Для облегчения задачи можно применить карточки, затем полностью отказаться от них, перейдя целиком на устный счет. Все задания легче выполнять в течение дня, чтобы освоить быстрее счет:
- Во время прогулки повторить с ребенком список планируемых покупок. После расчета у кассы малыш должен перечислить все товары. Если список не полный, малыш должен правильно назвать продукты или предметы для дальнейшего шопинга.
- Номерные знаки на машинах послужат разминкой для сложения или вычитания на улице. Различные сочетания цифр помогают быстрее научиться считать. Если впереди машина с трехзначным номером, можно сложить все составляющие. Затем отнимать из самого большого значения наименьшее.
- В учебных материалах опубликованы задачки для дошкольников. Они сопровождаются рисунками, четверостишьями, чтобы добавить игровую изюминку к «сухой» математике.
Важно! Каждый ребенок имеет особенности развития, одному будет легче усвоить материал, другой может схватывать на лету. Нужно грамотно направлять и помогать изучать азы математики
Дети тренируются в устном счете
Приемы сложения и вычитания вида□ + 6, 7, 8, 9, □–6, 7, 8, 9
Поселились все зверюшки вместе в теремке. И дружно вместе принялись записывать остальные таблицы. Все примерах в них составляются на основе тех правил, о которых напомнила нам лисичка. Давай поможем им.
Начнем с таблицы сложения числа 6.
В предыдущих таблицах есть только четыре примера, в которых встречается слагаемое 6. Найди их.
Вот что выписали зверята.
Теперь переставляем слагаемые местами.
А теперь из этой таблицы мы легко можем составить таблицу вычитания числа 6. Попробуй сделать это самостоятельно.
Посмотри, какую таблицу вычитания числа 6 записали наши друзья.
Вот мы и закончили! У нас получилось составить таблицы сложения и вычитания числа 6.
Продолжаем. С таблицей сложения числа 7 нам повезло еще больше, ведь в ней будет всего три примера. Ты уже нашел их? Вот что записали зверята.
Надеюсь, ты не забыл еще переместительное свойство действия сложения, ведь оно нам пригодится при составлении таблицы с числом 7.
Подумай над этим сам. А потом проверь.
Все правильно. Теперь из предыдущей таблицы составим таблицу вычитания числа 7.
Не спеши, сделай это самостоятельно.
Проверь свою таблицу.
Как быстро ты со всем справился.
Дальше будет еще легче. Вспомни примеры, где встречается слагаемое 8.
В таблице сложения числа 8 всего два примера. Составь их.
Давай проверим.
Теперь составь таблицу вычитания числа 8.
Вот что получилось у наших друзей.
Вот мы и выучили таблицы сложения и вычитания с числом 8.
Ты, наверное, уже немного устал. Но нам осталось познакомиться всего с одной таблицей. Это таблица сложения и вычитания с числом 9.
Ты уже нашел пример с числом 9? Уверена, что ты справился. Назови его.
9 + 1 = 10
Давай переставлять. Что у нас получится?
1 + 9 = 10
Вот и вся таблица сложения с числом 9. Переходим к таблице вычитания числа 9.
У тебя уже все готово?
Правильно.
10 − 9 = 1
Мы с тобой неплохо потрудились и составили все таблицы в пределах 10. Вот как выглядит общая таблица сложения.
В этой таблице красным цветом выделены примеры, которые составлены путем перестановки слагаемых. Их запомнить очень легко.
А вот общая таблица вычитания чисел в пределах 10.
В этой общей таблице хорошо видны несколько закономерностей, которые помогут тебе лучше и быстрее запомнить результаты указанных математических выражений на вычитание.
- В результате вычитания числа 1 получается число, которое является предыдущим по отношению к уменьшаемому.
- В примерах, где уменьшаемое и вычитаемое являются «соседями» в натуральном ряду чисел, разность равна 1.
- В таблице есть «парные» примеры, которые можно составить из одного и того же примера на сложение.
В этих выражениях компонентами являются одни и те же числа. Присмотрись и найди другие подобные пары примеров.
Чтобы получше запомнить все примеры из таблиц сложения и вычитания чисел в пределах 10, почаще тренируйся. Не забудь о наших сегодняшних помощниках.
Таблицы сложения и вычитания числа 1 мы выучили с помощью мышки, которая переходила маленькими шагами с числа на соседнее число. Как найти результаты в таблицах сложения и вычитания числа 2 нам подсказала лягушка, которая умеет прыгать через число. Зайчик показал, как узнать ответы в примерах из таблиц сложения и вычитания числа 3, который скачет так высоко, что может перепрыгнуть через два числа сразу. А двойной прыжок лягушки поможет вспомнить результаты таблиц сложения и вычитания числа 4. Лисичка же разгадала закономерности составления всех остальных таблиц.
Обязательно используй все приемы, которые нам подсказали герои нашей сказки. Чем чаще ты будешь повторять примеры из таблиц, тем быстрее ты запомнишь результаты каждого из них. Надеюсь, ты легко справишься с проверочными заданиями к этому уроку.
Числовой луч
Знаете, что такое луч и как он обозначается?
На рисунке (1.) видим луч. Прочитай его название. Какая точка является началом луча? Данный луч разбит штрихами на равные отрезки. Отрезок от 0 до 1 называется единичным отрезком.
На обыкновенном луче обозначены числа, у каждого своё место. Именно такой луч в математике называют числовым.
Определение числового луча
Числовой луч – это луч, на котором точками обозначены натуральные числа.
Поставим на луче AB точку C (2.) Длина отрезка AC числового луча – 5 единичных отрезков, длина отрезка AB – 8 единичных отрезков. Используя числовой луч, сравни отрезки: AC<AB; AC>CB; AC+CB=AB.
Где на отрезке AB (3.) будет находиться точка D, чтобы отрезок AB был меньше отрезка AD на 2 единичных отрезка? Для этого надо из длины отрезка AB отнять 2 единичных отрезка (8-2=6). Точка D будет находиться на делении 6.
Рисунок числового луча:
Используя чертёжную линейку, можно выполнять действия сложения и вычитания. Найдите с помощью числового луча решение задачи, а линейки помогут.
Задача
Велосипедист отправился из пункта А в 6 часов утра. Через 1 час он остановился отдохнуть в придорожном кафе. Спустя 2 часа добрался до конечного пункта. Построить числовой луч и отметить, необходимые для решения задачи, данные.
Сколько времени велосипедист был в пути? Во сколько часов он прибыл в конечный пункт?
А где решение этой задачи?
Задача 2
С помощью линейки построй числовой луч с началом в точке A (используй линейку), укажи на нём точку B (14 см). Найди расположение точек C и D, если отрезок AB короче отрезка AC на 6 см. Отрезок AB длиннее отрезка AD на 10 см. Запишите длину полученных отрезков AC и AD.
Для этого чертим луч с началом в точке A, на луче при помощи линейки находим отметку 14 см, ставим точку B. Мы знаем, что отрезок AB короче отрезка AC на 6 см. Чтобы найти отметку – расположение точки C, надо из 14-6=8 см. На отметке 8 см располагается точка C. Отрезок AB длиннее отрезка AD на 10 см, значит, точка D располагается на отметке 14+10=24 см.
Приведите примеры числовых лучей, которые можно встретить в повседневной жизни.
Числовой луч (картинки):
Этажи в высотном здании тоже своеобразный числовой луч. Особенно во время постепенного возведения стен дома.
Двузначные числа и их запись
Друзья, я запутался! Пытался записать двузначные числа и всё забыл! Помогите!
Давайте напомним, какие числа именуются двузначными. Чтобы их написать потребуется пара знаков – цифр двузначного числа. Правая цифра обозначает разряд единиц, а левая – разряд десятков. 30 и 30 можно назвать равными двузначными числами, так как количество десятков и единиц одинаковое.
Арифметический диктант
Запишите двузначное число, равное числу из 4 десятков и 6 единиц.
4 д. 6 ед. = 46
Приведите пример двузначного числа больше, чем 9 на 10.
Слово «больше» указывает на действие сложение, значит 9+10=19. Искомое число – 19.
Из наибольшего двузначного числа отнимите наименьшее двузначное число.
Решение будет следующим: 99-10=89
Прочитайте ответы, начиная от самого большого к самому маленькому двузначному числу. Полученные ответы: 46, 19, 89. Наименьшее из этих чисел 19, за ним при счёте следует 46 и последним – 89.
Задание для знатоков
- Используя только цифры, которые обозначают чётные числа (2, 4, 6, 8), составить двузначные числа.
Для написания применили чётные числа. Если число оканчивается цифрами 0, 2, 4, 6, 8, то оно считается чётным.
- Записать, начиная с наименьшего двузначного числа.
Используя записанный ряд чисел, приведи пример двузначного числа, которое больше всех остальных.
Для проверки: 22 24 26 28 42 44 46 48 62 64 66 68 82 84 86 88.
Загадка
Используя однозначные и двузначные числа в порядке возрастания, нарисовать ответ на загадку.
Она кудахчет по утрам, Неся яйцо в подарок нам.
Напиши самое большое двузначное число, которое использовалось для рисования.
Сложение двузначных чисел
Музыкальная пауза!
Учите, детки, математику!
Старательней вникайте в суть…
Гоните лень, усвойте тактику –
Учить предмет не как-нибудь.
А я хочу, а я хочу опять…
Заполни пропуски в таблице:
Сложение двузначных чисел без перехода через десяток
Для удобства выполнения действий можно применять запись в столбик.
Схема действий:
- Записываю цифру единиц под разрядом единиц, а цифру десятков – под разрядом десятков.
- Выполняю сложение единиц, результат пишу под разрядом единиц.
- Выполняю сложение десятков, результат пишу под разрядом десятков.
- Называю результат.
Найдите суммы чисел, записанных в столбик:
Вычитание двузначных чисел без перехода через десяток
Чтобы найти разность двузначных чисел, можно использовать запись столбиком.
Схема действий:
- Записываю цифру единиц под разрядом единиц, а цифру десятков – под разрядом десятков.
- Выполняю вычитание единиц, результат записываю под единицами.
- Выполняю вычитание десятков, результат записываю под десятками.
- Называю результат.
Найдите разность двух чисел, записанных в столбик: