Математика: учимся решать примеры на умножение
Содержание:
Что важнее – умножение или сложение?
При решении примеров Расставь порядок действий. Умножить или разделить – на первом месте.
Для выражений, в которых присутствуют не сложение либо вычитание, а умножение или деление, действует то же правило: все действия с числами выполняются по порядку, начиная с левого:
81 : 9 х 2 = ?
- 81 : 9 = 9;
- 9 х 2 = 18.
Сложнее случай – когда в одной задаче встречаются умножение или деление со сложением или вычитанием. Каков порядок вычислений тогда?
Рассмотрим пример:
8 : 2 + 2 = ?
Если выполнять все действия по порядку, сначала деление, затем сложение. В итоге получим:
- 8 : 2 = 4;
- 4 + 2 = 6.
Правило третье: Если в задаче необходимо произвести умножение или деление, они выполняются в первую очередь.
Значит, пример решен правильно. А если в нем будут скобки?
8 : (2 + 2) = ?
- 2 + 2 = 4;
- 8 : 4 = 2.
То, что заключено в скобки, всегда в приоритете. Для того они и стоят в выражении. Поэтому порядок вычислений в подобных выражениях будет следующим:
- Раскрываем скобки. Если их несколько, делаем вычисления для каждых.
- Умножение либо деление.
- Вычисляем конечный результат, выполняя действия слева направо.
Пример:
81 : 9 + (6 – 2) + 3 = ?
- 6 – 2 = 4;
- 81 : 9 = 9;
- 9 + 4 = 13;
- 13 + 3 = 16.
81 : 9 + (6 – 2) + 3 = 16.
А что будет приоритетным: умножение — или деление, вычитание — или сложение, если оба действия встречаются в задаче? Ничего, они равны, в таком случае действует первое правило – действия производятся одно за другим, начиная слева.
Алгоритм решения выражения:
- Анализируем задачу – есть ли скобки, какие математические действия нужно будет выполнить.
- Выполняем вычисления в скобках.
- Делаем умножение и деление.
- Выполняем сложение и вычитание.
Пример:
28 : (11 – 4) + 18 – (25 – 8) = ?
Порядок вычисления:
- 11 – 4 = 7;
- 25 – 8 = 17;
- 28 : 7 = 4;
- 4 + 18 = 22;
- 22 – 17 = 5.
Ответ: 28 : (11 – 4) + 18 – (25 – 8) = 5.
Важно! Если в выражении есть буквенные обозначения, порядок действий остается прежним
Правило встречается в следующих упражнениях:
2 класс
Страница 67. Вариант 2. Тест 2,
Моро, Волкова, Проверочные работы
Страница 75,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 76,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 78,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 82,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 83,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 84,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 85,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 89,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 57,
Моро, Волкова, Рабочая тетрадь, часть 2
3 класс
Страница 42,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 47,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 99,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 74,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 11. Вариант 2. № 1,
Моро, Волкова, Проверочные работы
Страница 29. Вариант 2. Тест 2,
Моро, Волкова, Проверочные работы
Страница 40. Вариант 1. № 6,
Моро, Волкова, Проверочные работы
Страница 9,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 82,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 29,
Моро, Волкова, Рабочая тетрадь, часть 2
4 класс
Страница 69,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 93,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 13. Вариант 2. Тест 1,
Моро, Волкова, Проверочные работы
Страница 85. Вариант 2. Тест 3,
Моро, Волкова, Проверочные работы
Страница 15,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 55,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 64,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 76,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 77,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 47,
Моро, Волкова, Рабочая тетрадь, часть 2
5 класс
Задание 441,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 673,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 818,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Упражнение 36,
Мерзляк, Полонский, Якир, Учебник
Упражнение 1,
Мерзляк, Полонский, Якир, Учебник
Упражнение 520,
Мерзляк, Полонский, Якир, Учебник
Упражнение 656,
Мерзляк, Полонский, Якир, Учебник
Упражнение 657,
Мерзляк, Полонский, Якир, Учебник
Упражнение 673,
Мерзляк, Полонский, Якир, Учебник
Упражнение 1050,
Мерзляк, Полонский, Якир, Учебник
6 класс
Задание 1211,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1222,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1262,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1266,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Свойства умножения
Умножение — арифметическое действие, в котором участвуют два аргумента: множимый и множитель. Результат их умножения называется произведением.
Узнаем, какие бывают свойства умножения и как их применять.
Переместительное свойство умножения
От перестановки мест множителей произведение не меняется. |
То есть, для любых чисел a и b верно равенство: a * b = b * a.
Это свойство можно применять к произведениям, в которых больше двух множителей.
Примеры:
- 6 * 5 = 5 * 6 = 30;
- 4 * 2 * 3 = 3 * 2 * 4 = 24.
Сочетательное свойство умножения
Произведение трех и более множителей не изменится, если какую-то группу множителей заменить их произведением. |
То есть, для любых чисел a, b и c верно равенство: a * b * c = (a * b) * c = a * (b * c).
Пример:
- 3 * 2 * 5 = 3 * (2 * 5) = 3 * 10 = 30
или
3 * 2 * 5 = (3 * 2) * 5 = 6 * 5 = 30.
Сочетательное свойство можно использовать, чтобы упростить вычисления при умножении. Например: 25 * 15 * 4 = (25 * 4) * 15 = 100 * 15 = 1500.
Если не применять сочетательное свойство и вычислять последовательно, решение будет значительно сложнее: 25 * 15 * 4 = (25 * 15) * 4 = 375 * 4 = 1500.
Распределительное свойство умножения относительно сложения
Чтобы умножить сумму на число, нужно умножить на это число каждое слагаемое и сложить полученные результаты. |
То есть, для любых чисел a, b и c верно равенство: (a + b) * c = a * c + b * c.
Это свойство работает с любым количеством слагаемых: (a + b + с + d) * k = a * k + b * k + c * k + d * k.
В обратную сторону распределительное свойство умножения относительно сложения звучит так:
Чтобы число умножить на сумму чисел, нужно это число умножить отдельно на каждое слагаемое и полученные произведения сложить. |
Распределительное свойство умножения относительно вычитания
Чтобы умножить разность на число, нужно умножить на это число сначала уменьшаемое, затем вычитаемое, и из первого произведения вычесть второе. |
То есть, для любых чисел a, b и c верно равенство: (a − b) * c = a * c − b * c.
В обратную сторону распределительное свойство умножения относительно вычитания звучит так:
Чтобы число умножить на разность чисел, нужно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе. |
Свойство нуля при умножении
Если в произведении хотя бы один множитель равен нулю, то само произведение будет равно нулю. |
То есть, для любых чисел a, b и c верно равенство: 0 * a * b * c = 0.
Свойство единицы при умножении
Если умножить любое целое число на единицу, то в результате получится это же число. |
То есть, умножение на единицу не изменяет умножаемое число: a * 1 = a.
Свойства деления
Деление — арифметическое действие обратное умножению. В результате деления получается число (частное), которое при умножении на делитель дает делимое.
Основные свойства деления целых чисел
|
И еще одно важное свойство деления, которое проходят в 5 классе:
Если делимое и делитель умножить или разделить на одно и тоже натуральное число, то их частное не изменится. |
В буквенной форме это свойство выглядит так: a : b = (a * k) : (b * k), где k — любое натуральное число.
Применим свойства деления на практике.
Пример 1
Мама купила 6 кг конфет и разложила их в три пакета. Сколько килограммов конфет в каждом пакете?
Как решаем:
Так как в каждом пакете одинаковое количество конфет, разделим 6 кг на три равные части: 6 : 3 = 2. Значит в каждом пакете по 2 кг конфет.
Ответ: 2 кг
Пример 2
Вычислить: 500 * (100 : 5).
Как решаем: 500 * (100 : 5) = (500 * 100) : 5 = 50000 : 5 = 10000.
Ответ: 500 * (100 : 5) = 10000.
Пример 3
Упростить выражение: 27a – 16a.
Как решаем: 27a – 16a = a * 27 – a * 16 = a * (27 — 16) = a * 11 = 11a.
Ответ: 11a.
Свойства умножения и деления помогают упрощать выражения. То есть, если запомнить эти свойства и научиться их применять, то решать задачки можно быстрее.
Да какая разница?
Действительно, настолько ли это важно – какое действие в примере выполнить первым, какое вторым?
Рассмотрим примеры:
10 – 5 + 2 = ?
Если мы будем выполнять действия по порядку, получим:
- 10 – 5 = 5;
- 5 + 2 = 7.
Попробуем иначе:
- 5 + 2 = 7;
- 10 – 7 = 3.
Получили два разных ответа. Но так быть не должно, следовательно, порядок выполнения действий имеет значение. Тем более, если в выражении имеются скобки:
25 – (18+2) = ?
Пробуем решить двумя способами:
- 25 – 18 + 2 = 9;
- 25 – 20 = 5.
Ответы разные, а для того чтобы определить порядок действий, в выражении стоят скобки – они показывают, какое действие нужно выполнить первым. Значит, правильным будет такое решение:
- 18 + 2 = 20;
- 25 – 20 = 5.
Другого решения у ответа у примера быть не должно.
Итак:
Правило первое: Математические действия в выражении выполняются по порядку, начиная с левого, направо.
Правило второе: Если в выражении есть скобки, действие в скобках выполняется в первую очередь, а затем следуют действия по порядку, слева направо.