Как доступно объяснить ребёнку суть деления чисел
Содержание:
- Убедиться в том, что ребенок усвоил азы арифметики и правильно их понял
- Как делить столбиком числа с нулями?
- Как научиться делить столбиком на двузначное
- Определение типа числа
- Обучение делению в столбик при помощи таблицы умножения
- Как научиться делить столбиком трехзначные числа
- Правила деления в столбик
- Решение задач с единицами площади
- Деление с остатком и без
- Деление с остатком на 10, 100, 1 000
- Как проводится
- Деление десятичных дробей: основы, правила, примеры для тренировок
- Простые и составные числа
- Как записывать деление в столбик
- Обучение делению в столбик в форме игры
- Деление в столбик двузначных, трехзначных, многозначных чисел, чисел с нулями
- Обучение делению с остатком
- Подготовка в обучению
Убедиться в том, что ребенок усвоил азы арифметики и правильно их понял
Иногда корень проблемы находится именно в этом. Базовыми основами для школьника являются понимание:
-
сложения;
-
вычитание;
-
таблицы умножения.
Взрослому обязательно надо напомнить ребенку основы умножения и убедиться в знании им таблицы. Также нужно быть уверенным в том, что ребенок знает разряды и классы чисел и не путается в сотнях, десятках, единицах и т.п. Знает ли и помнит ли он, что:
-
Числа – это единицы счета, с помощью которых можно посчитать все на Свете, а цифры – это специальные знаки, которыми их записывают.
-
Все многозначные числа разбиты на группы по три в каждой и эти группы зовут классами, — единицы, десятки, сотни и т.д. этого класса, т.е. единиц, десятков, сотен, тысяч, миллионов и т.п.
-
Все числа имеют разряд в зависимости, от той позиции которую они занимают в числе.
Если вместо этих арифметических азов наблюдается «провал» в фундаменте базовых математических знаний, на дальнейшие успехи в усвоении математики можно не рассчитывать. Математика относится к разряду точных наук и лежит в основе многих других дисциплин которые предстоит изучать школьнику.
Довести до ребенка мысль о том, что пробелов в ней быть не должно, — важная задача для взрослого. Если часть материала не была усвоена, по независящим от ученика обстоятельствам, например, при болезни, изучить, то, что давали на уроке необходимо самостоятельно дома. Делать это надо непременно, чтобы избежать затруднений при решении примеров и задач, как в самой математике, так и смежных с ней дисциплин, которые предстоят к изучению в будущем.
Как делить столбиком числа с нулями?
Последовательность и алгоритм действий аналогичен классическому, рассмотренному в первом разделе.
Из нюансов отметим:
- при наличии нулей в конце делителя и делимого смело сокращайте их. Предложите ребёнку зачеркнуть их карандашом и продолжить деление как обычно. Например, в ситуации 1200:400 ребёнок может убрать оба нуля у обоих чисел, но в ситуации 15600:560 — только по одному крайнему,
- если ноль есть только в делителе, то подбирайте первую цифру для действия, ориентируясь на число перед ним. Например, в примере 6537:70 поставьте 9 в частное первым числом. Для данного примера совершайте умножение на обе цифры делителя и подписывайте их под тремя у делимого.
Когда нулей у делимого много и процесс деления закончился до того, как вы их все использовали, то перенесите их в частное после цифр, которые образовались до этого. Пример, 1000:2=500 — вы перенесли два последних нуля.
Итак, мы рассмотрели основные ситуации деления чисел разного количества разрядности в столбик, определили алгоритм действия и акценты для обучения ребёнка.
Практикуйте полученные знания и помогайте своему чаду осваивать математику.
Поскольку операция деления простых чисел является одним из важных математических действий, многие родители задумываются о том, как научить ребенка делению. Перед тем, как приступить к обучению, вы должны убедиться в том, что малыш уже умеет вычитать, складывать и умножать числа. Лучше всего приступать к изучению деления столбиком, когда ребенок отправляется в третий класс
Очень важно объяснить, что деление представляет собой процесс, по ходу которого целое разбивают на отдельные части. Не забудьте учесть знания таблицы умножения – убедитесь в том, что кроха уверенно знает ее. Перед тем, как серьезно приступить к обучению, попробуйте освоить эту нехитрую науку в игровой форме
Для того чтобы сформировать у малыша представление о том, что деление – это разбор целого на части, дайте ему несколько предметов и попросите разделить между членами семьи или игрушками. При этом эффективно использовать нечто целое – фрукт или овощ, например, который можно разрезать на кусочки
Перед тем, как серьезно приступить к обучению, попробуйте освоить эту нехитрую науку в игровой форме. Для того чтобы сформировать у малыша представление о том, что деление – это разбор целого на части, дайте ему несколько предметов и попросите разделить между членами семьи или игрушками. При этом эффективно использовать нечто целое – фрукт или овощ, например, который можно разрезать на кусочки.
Потренируйтесь на кубиках. Возьмите парное количество этих элементов и предложите ребенку разделить их поровну между собой и вами. Варьируйте задание. Добавьте такое количество кубиков, чтобы их общее количество делилось на три или шесть. Затем можно усложнить задачу и делить на восемь, семь или девять. После выполнения каждого задания тщательно анализируйте результат вместе с малышом. Он должен понимать сам процесс. Если что-то ему непонятно, постарайтесь доходчиво это объяснить. Не зацикливайтесь на определенных предметах. Постоянно меняйте их, чтобы ребенок приспосабливался делить любые объекты.
Важно! Для начала составляйте задания таким образом, чтобы малыш проводил действия с четным количеством объектов. Таким образом, у ребенка получится одинаковое количество предметов. Это пригодится на следующем этапе, чтобы дать понять малышу, что деление – операция обратная умножению
Это пригодится на следующем этапе, чтобы дать понять малышу, что деление – операция обратная умножению.
Вместе с этим ищут и читают:
Как научиться делить столбиком на двузначное
В 4 классе ученик должен уметь делить уголком многозначные значения на двух- и трехзначное число. Полученный навык необходим для дальнейшего курса математики вплоть до 11 класса.
Конечно, такое деление сложнее однозначного, но при правильном подходе и понимании оно не составит труда. Здесь важен правильный подбор чисел и постепенное освоение темы, от простого к сложному.
Для примера выполним действие: 144 : 24
Как и в случае однозначного деления, определим число большее самого делителя: 14<24, т.е. будем делить сразу все число — 144. Прикинем 144 : 20, получим примерно 7. Пробную цифру пока не пишут в колонке. Проверим, 7 х 24 = 168, что значительно больше нашего делимого. Возьмем по 6 х 24 = 144 – это наше число. Подпишем его под делимым и получим ответ – 6.
Разделим 1035 на 23.
Определив первую цифру, 103 >23, делим ее на 23. 20 х 5 = 100, но у нас в примере 23 х 5 = 115, что больше 103. Возьмем по 4: 23 х 4 = 92. Запишем ответ в правой колонке под чертой.
От 103 – 92 = 11. Данные запишем под делимым. 11<23, т.е. расчеты сделаны верно.
К 11 снесем 5 и получим цифру «115». Методом подбора определим результат: 23 х 5 = 115.
Цифру «5» запишем рядом с 4 в ответ – 45.
Проверим: 45 х 23 = 1035, результат верен.
Определение типа числа
В математике числа делятся на простые и составные. Существует несколько способов определения их принадлежности к тому или иному виду:
- Автоматизированный.
- Ручной.
В первом случае применяются специальные таблицы простых чисел, тренажеры или вычислительные машины. Второй является наиболее трудоемким, поскольку нужно рассматривать каждый признак делимости. Если величина делится на 1, на саму себя и какое-либо другое, то является составным. Алгоритм определения простого числа:
- Выполнить перебор всех делителей.
- Сделать вывод.
Для примера следует разобрать значение 71
Следует обратить внимание на признаки деления. Новичкам рекомендуется выписать все цифры от 1 до 9
Далее следует возле каждого значения записать результат, поставив знак «+» при делении без остатка или «-» — с остатком:
- 1: «+».
- 2: «-» (не является четным).
- 3: «-» (7 + 1 = 8, 8 не делится на три).
- 4: «-» (7 и не делятся на 4).
- 5: «-» (последняя цифра не эквивалентна 0 или 5).
- 6: «-» (8 не делится на 3, но делится на 2. Этого условия недостаточно).
- 7: «-» (числа не делятся на 7).
- 8: «-» (не делится сумма цифр на 2 и 4).
- 9: отсутствует в таблице умножения на 9.
Обучение делению в столбик при помощи таблицы умножения
Родителям необходимо разъяснить, что деление имеет сходство с таблицей умножения. Только действия противоположны. Для наглядности нужно привести пример:
- Скажите ученику, чтобы он произвол умножение значений 6 и 5. Ответ – 30.
- Подскажите школьнику, что число 30 является результатом математического действия с двумя числами: 6 и 5. А именно, результатом умножения.
- Разделите 30 на 6. В результате математического действия получится 5. Школьник сможет убедиться в том, что деление – это то же, что и умножение, но наоборот.
Можно воспользоваться таблицей умножения для наглядности деления, если ребенок хорошо ее усвоил.
Как научиться делить столбиком трехзначные числа
Когда в делителе стоит трехзначное число, действие лучше всего выполнять в столбик. Алгоритм математического решения аналогичен делению на двузначное число.
Для примера рассмотрим следующие действия: 146676 : 719
146<719, поэтому сразу возьмем четырехзначное число «1466». В данном значении помещается 2 делителя: 719 х 2= 1438. Цифра «2» будет первым значением частного. Ее запишем справа под уголком.
1466 — 1438 = 28. Полученную разность запишем под чертой слева. Снесем к 28 цифру «7». 287<719, поэтому рядом с двойкой запишем «0».
Снесем последнюю цифру делимого «6», в итоге получится число «2876», которое разделим на 719. Возьмем по 3: 719 х 3 = 2157 — мало, можно взять по 4: 719 х 4 = 2876. Цифру «4» запишем рядом с «20», получим в ответе 204. От 2876 отнимем 2876 , получим разность 0.
Правила деления в столбик
Без остатка
Чтобы найти частное от деления одного числа на другое (с любым количеством разрядов) можно выполнить это арифметическое действие в столбик.
Рассмотрим правила деления на практическом примере для лучшего понимания. Допустим, нам нужно трехзначное число разделить на однозначное, к примеру 256 на 8. Вот, что мы делаем:
1. Пишем делимое (256), затем немного отступаем от него и в этой же строке дописываем делитель (8). Затем между этими числами дорисовываем уголок. Результат будем записывать под делителем.
2. В делимом слева направо отсчитываем минимально необходимое количество разрядов таким образом, чтобы полученное из содержащихся в них цифр новое число было больше, чем делитель. В нашем случае числа 2 недостаточно, поэтому к нему добавляем 5 и в итоге получаем 25.
Примечание: Если крайняя левая цифра делимого больше делителя, добавлять к нему цифру следующего разряда не нужно, и мы сразу приступаем к следующему шагу.
3. Определяем, сколько целых раз наш делитель содержится в полученном из цифр делимого числе (25). В нашем случае – три раза. Пишем цифру 3 в отведенном для этого месте, затем умножаем ее на делитель (3 ⋅ 8). Получившееся число (24) отнимаем из 25 и остается единица
Важно, чтобы результат вычитания (остаток) обязательно был меньше делителя, иначе мы неправильно выполнили вычисления
Примечание: Правила и примеры вычитания чисел столбиком приведены в отдельной публикации.
4. К остатку (1) добавляем следующую цифру делимого (6), чтобы получить новое число, которое снова больше, чем делитель.
Примечание: Если при добавлении следующей цифры образовавшееся новое число все еще меньше делителя, берем еще одну цифру справа (если есть такая возможность), при этом в частном пишем ноль. В противном случае, получается деление с остатком, которое мы рассмотрим далее.
5. В числе 16 содержится ровно два раза по восемь (2 ⋅ 8), следовательно, пишем 2 в частном, затем выполняем вычитание (16 – 16) и получаем остаток, равный нулю.
На этом деление столбиком числа 256 на 8 успешно выполнено, и частное равно 32.
С остатком
В целом, алгоритм действий аналогичен вышеописанному. Разница лишь в том, что при последнем вычитании остается неделимой остаток, к которому больше нечего дописывать из делимого, т.к. все его разряды уже были использованы. Остаток обычно записывается справа от результата в скобках.
Например, остаток от деления 112 на 5 равняется двум. То есть 112 : 5 = 22 (2).
Пояснение: в результате вычитания 10 из 12 получается 2, но к нему больше нечего дописать из делимого.
Решение задач с единицами площади
Ребята, взрослые люди часто испытывают досаду, занимаясь ремонтом дома или квартиры. Почему? Знакома ситуация, когда чуть-чуть не хватило краски или обоев? Нужно срочно бежать в магазин, чтобы купить недостающие материалы. Можно ли этого избежать? Конечно, можно! Главное, правильно выполнить расчеты. Например, правильно измерить площадь пола под покраску или площадь стен под обои.
Задача
В комнате длиной 7 м и шириной 8 м укладывают на пол ламинат квадратами 50х50 см. Сколько штук ламината потребуется для этой комнаты?
Подсказка. Вычислите площадь комнаты и площадь одного квадрата ламината. Одинаковые ли единицы площади вы использовали? Выразите квадратные метры в квадратных сантиметрах.
Решите задачу самостоятельно.
Проверь себя.
S пола = 7 ∙ 8 = 56 (м²)
S лам. = 50 ∙50 = 2 500 (см²)
1 м² = 10 000 см²
10 000 : 2 500 = 4 (шт.) – ламината в 1 м².
56 ∙ 4 = 224 (шт.) – ламината потребуется.
Ответ: 224 штук ламината.
Задача
Для покраски пола комнаты площадью 35 м² купили 3 кг краски. Хватит ли этой краски, если на 1 м² пола расходуется 100 г краски.
Выразим 3 кг в граммах.
1 кг = 1 000 г
3 кг = 3 000 г
35 ∙ 100 = 3 500 (г) – краски потребуется.
3 500 – 3000 = 500 (г) – краски не хватит для покраски пола.
Ответ: 500 г краски не хватит.
Решите аналогичную задачу самостоятельно и проверьте по образцу.
Задача
Стены комнаты решили оклеить обоями. Площадь поверхности составляет 80 м². На одной стене есть окно – 3 м², а на другой – дверь занимает 4 м². Хватит ли 7 рулонов обоев, если в одном рулоне 10 м² обоев.
Проверь себя.
3 + 4 = 7 (м²) – занимают окно и дверь.
80 – 7 = 73 (м²) – нужно оклеить обоями.
7 ∙ 10 = 70 (м²) – в семи рулонах.
73 – 70 = 3 (м²) – обоев не хватит.
Ответ: не хватит 3 м².
Ребята, на уроке мы учились делить на трехзначное число без остатка и с остатком, решали сложные задачи с единицами площади. А теперь настало время подвести итоги! Устроим небольшое соревнование на звание «Знатока математики».
Решите примеры за одну минуту!
(12 543 – 3 890 + 15 498) ∙ 69 ∙ 0 ∙594 =
640 ∙5 ∙0 +640 : 1 – 630 =
? + 150 – 240 – 10 + 26 = 526
Проверь себя.
0, 10, 600.
Кому удалось справиться с заданием за одну минуту, может смело назвать себя большим молодцом!
В первом и втором выражениях самые наблюдательные заметили умножение на нуль (можно не вычислять все выражение, а ∙ 0 = 0).
В третьем выражении первое число можно быстро найти, вычисляя с конца обратным действием: 526 – 26 + 10 + 240 – 150 = 600
Деление с остатком и без
Иметь дело мы будем с целыми числами, а вот в результате может получиться и десятичная дробь, в зависимости от того, допустимо ли в задании частное с остатком. Для начала попробуем разделить трехзначное число на однозначное.
Пример 1
Возьмем 216 разделить 3. Попробуем записать пример:
Посмотрим, какая из первых цифр делится нацело на 3. Двойка? Нет. Значит, берем две цифры — 21. Получится 7, а промежуточное действие будет выглядеть так:
Теперь остается разделить на 3 последнюю цифру — 6, потому после первого шага остаток не образовался. Шестерку в столбике надо написать строго под той, что стоит в примере — в этом главный фокус, иначе можно очень легко сбиться. Что ж, давайте запишем аккуратно. Например, вот так:
Пример 2
Но может быть и другая ситуация. Например, когда первые две цифры на однозначное число нацело не делятся. Ничего страшного. Записываем:
Первым делом придется делить 76, никуда не денешься. Ближайшее число, кратное 8 (то есть то, которое делится без остатка), — 72. Его и будем отнимать. Получим 9, которое сразу запишем в частное, и 4 в остатке — его нужно поместить под чертой:
Деление с остатком на 10, 100, 1 000
Рассмотрите внимательно примеры . На какие две группы можно их разделить?
79 : 10 450 : 10 900 : 100 817 : 100 95 000 : 1 000 95 600 : 1 000
Запишем в первый столбик примеры на деление без остатка, а во второй – с остатком.
450 : 10 900 : 100 95 000 : 1 000 |
79 : 10 817 : 100 95 600 : 1 000 |
Вспомним, как разделить число на 10, 100, 1 000. При делении на 10 у делимого убираем один нуль, при делении на 100 – убираем два нуля, при делении на 1 000 – убираем три нуля. Очень просто! Решим примеры первого столбика.
450 : 10 = 45
900 : 100 = 9
95 000 : 1 000 = 95
А какое правило действует при делении на 10, 100, 1 000 с остатком?
У делимого не будем убирать цифры, а только лишь отступим (с конца) на одну цифру, если делим на 10, на две – если делим на 100, на три – если делим на 1 000. Вот так:
79 : 10 79
817 : 100 817
95 600 : 1 000 95 600
Получаем ответ и остаток.
79 : 10 = 7 (ост. 9)
817 : 100 = 8 (ост. 17)
95 600 : 1 000 = 95 (ост. 600)
Сделаем проверку умножением и прибавим остаток.
7 ∙ 10 + 9 = 79
8 ∙100 + 17 = 817
95 ∙ 1 000 + 600 = 95 600
Решили верно.
Ребята, помните о том, что при делении остаток должен быть меньше делителя!
Давайте проверим это правило в наших примерах.
79 : 10 = 7 (ост. 9) 9< 10
817 : 100 = 8 (ост. 17) 17 <100
95 600 : 1 000 = 95 (ост. 600) 600 < 1 000
Следующие примеры решите самостоятельно. Обязательно сравните остаток с делителем. Выполните проверку умножением.
714 : 100
54 : 10
78 340 : 1 000
Проверь себя.
714 : 100 = 7 (ост.14) 14 < 100 7 ∙ 100 + 14 = 714
54 : 10 = 5 (ост.4) 4 < 10 5 ∙ 10 + 4 = 54
78 340 : 1 000 = 78 (ост.340) 340 < 1 000 78 ∙ 1 000 + 340 = 78 340
Как проводится
Деление с остатком – это способ, при котором число нельзя разделить ровно на несколько частей. В результате данного математического действия, помимо целой части, остается неделимый кусок.
Приведем простой пример того, как делить с остатком:
Есть банка на 5 литров воды и 2 банки по 2 литра. Когда из пяти литровой банки воду переливают в двухлитровые, в пятилитровой останется 1 литр не использованной воды. Это и есть остаток. В цифровом варианте это выглядит так:
5:2=2 ост (1). Откуда 1? 2х2=4, 5-4=1.
Теперь рассмотрим порядок деления в столбик с остатком. Это визуально облегчает процесс расчета и помогает не потерять числа.
Алгоритм определяет расположение всех элементов и последовательность действий, по которой совершается вычисление. В качестве примера, разделим 17 на 5.
Основные этапы:
- Правильная запись. Делимое (17) – располагается по левую сторону. Правее от делимого пишут делитель (5). Между ними проводят вертикальную черту (обозначает знак деления), а затем, от этой черты проводят горизонтальную, подчеркивая делитель. Основные черты обозначена оранжевым цветом.
- Поиск целого. Далее, проводят первый и самый простой расчет – сколько делителей умещается в делимом. Воспользуемся таблицей умножения и проверим по порядку: 5*1=5 помещается, 5*2=10 помещается, 5*3=15 помещается, 5*4=20 – не помещается. Пять раз по четыре – больше чем семнадцать, значит, четвертая пятерка не вмещается. Возвращаемся к трем. В 17 литровую банку влезет 3 пятилитровых. Записываем результат в форму: 3 пишем под чертой, под делителем. 3 – это неполное частное.
- Определение остатка. 3*5=15. 15 записываем под делимым. Подводим черту (обозначает знак «=»). Вычитаем из делимого полученное число: 17-15=2. Записываем результат ниже под чертой – в столбик (отсюда и название алгоритма). 2 – это остаток.
Обратите внимание! При делении таким образом, остаток всегда должен быть меньше делителя
Деление десятичных дробей: основы, правила, примеры для тренировок
Примеры с дробями на деление
Десятичные дроби имеют в знаменателе числа, которые делятся на 10. Это 10, 100, 1000 и подобные им суммы.
Примеры с дробями на деление
Примеры с дробями на деление
Примеры с дробями на деление
Примеры с дробями на деление
Бывает, что в примере на деление появляются определенные десятичные дроби непериодического свойства. Тогда тактика радикально меняется. К «привычному» виду их, как правило, привести нельзя.
Примеры с дробями на деление
Поэтому необходимо прибегать к логичному округлению. Это основы деления дробей. Производится округление до определенного разряда. Действие может быть применено как по отношению к делителю, так и по отношению к делимому. Это хорошо видно на примере выше.
Округлять нужно и конечную дробь, для точности и удобства. Но, на самом деле, в операциях с дробями данного вида нет ничего неординарного или затруднительного — все просто.
Простые и составные числа
Числовые значения в математике делятся на простые и составные. Ошибка многих новичков при решении задач состоит в том, что многие из них не знают о наличии специальных таблиц. Для «распознания» простого числа существуют два способа:
- Ручной.
- Табличный.
Первым методом рекомендуется пользоваться, когда нет возможности определить простое число при помощи таблицы или вычислительной машины (компьютера). Для этих целей существует специальный алгоритм, который состоит из набора шагов на нахождение делителя. Он имеет следующий вид:
- Произвести перебор всех множителей.
- Записать результат или убедиться, что число является простым.
Он является простым, но для понимания его математического смысла следует разобрать определенный пример для числа 5678913. Решение задания нужно осуществлять по следующей схеме:
- 1: делится, то есть 5678913 / 1 = 5678913.
- 2: не является четным. Следовательно, этого делителя не существует.
- 3: 5 + 6 + 7 + 8 + 9 + 1 + 3 = 39 = 3 + 9 = 12 (делится).
- 4: множитель отсутствует, поскольку 13 не делится на 4.
- 5: число не заканчивается на 0 или 5 (не делится).
- 6: сумма цифр равная 12, и делится на 2 и 3 (делится).
- 7: 5|678|913 = 6 + 7 + 8 + 9 + 1 + 3 = 34 (нет делителя).
- 8: 913 не делится на 8, 4 и 2.
- 9: не делится, поскольку сумма цифр эквивалентна 12.
Когда нужно доказать, что число является простым, тогда можно завершить упражнение на третьем шаге. Для этого необходимо минимальное количество операций, поскольку дальше их выполнять не имеет смысла. Если суть решения заключается в нахождении делителей, то его можно продолжать до 9 пункта включительно.
Как записывать деление в столбик
Деление многозначных чисел легче всего выполнять столбиком. Деление столбиком иначе называют деление уголком.
Перед тем как начать выполнение деления столбиком, рассмотрим подробно саму форму записи деления столбиком. Сначала записываем делимое и справа от него ставим вертикальную черту:
За вертикальной чертой, напротив делимого, пишем делитель и под ним проводим горизонтальную черту:
Под горизонтальной чертой поэтапно будет записываться получающееся в результате вычислений частное:
Под делимым будут записываться промежуточные вычисления:
Полностью форма записи деления столбиком выглядит следующим образом:
Обучение делению в столбик в форме игры
Можно поставить задачи таким образом:
1Организуйте ребенку место для обучения в форме игры. Посадите его игрушки в круг, а ребенку дайте груши или конфеты. Предложите ученику разделить 4 конфеты между 2 или 3 куклами. Чтобы добиться понимания со стороны ребенка, постепенно прибавляйте количество конфет до 8 и 10. Даже если малыш будет долго действовать, не давите и не кричите на него. Вам потребуется терпение. Если ребенок делает что-то неправильно, исправляйте его спокойно. Затем, как он завершит первое действие деления конфет между участниками игры, попросит его вычислить, сколько конфет досталось каждой игрушке. Теперь вывод. Если было 8 конфет и 4 игрушки, то каждой досталось по 2 конфеты. Дайте ребенку понять, что разделить – это значит распределить равное количество конфет всем игрушкам.
2Обучать математическому действию можно с помощью цифр. Дайте ученику понять, что цифры можно квалифицировать, как груши или конфеты. Скажите, что количество груш, которое требуется разделить – это делимое. А количество игрушек, на которых приходятся конфеты – это делитель.
3Дайте ребенку 6 груш. Поставьте перед ним задачу: разделить количество груш между дедушкой, собакой и папой. Затем попросите его поделить 6 груш между дедушкой и папой. Объясните ребенку причину, по которой получился неодинаковый результат при делении.
4Расскажите ученику о делении с остатком. Дайте ребенку 5 конфет и попросите его раздать их поровну между котом и папой. У ребенка останется 1 конфета. Расскажите ребенку, почему получилось именно так. Данное математическое действие стоит рассмотреть отдельно, так как это может вызвать сложности.
Деление чисел
Обучение в игровой форме может помочь ребенку быстрее понять весь процесс деления чисел. Он сможет усвоить, что наибольшее число делится на наименьшее или наоборот. То есть, наибольшее число – это конфеты, а наименьшее – участники. В столбике 1 числом будет количество конфет, а 2 – количество участников.
Не перегружайте ребенка новыми знаниями. Обучать нужно постепенно. Переходить к новому материалу нужно тогда, когда предыдущий материал закреплен.
Деление в столбик двузначных, трехзначных, многозначных чисел, чисел с нулями
Не нужно пугаться сразу, что процесс деления не простой, поэтому вы не освоите его. Освоите! В математике следует соблюдать четкие правила, тогда у вас все получится. Алгоритм деления лучше учить на конкретных примерах, ниже будет представлено множество примеров.
Пример деления на трехзначный делитель
Все они выполняются по схеме:
- Вначале записывается делимое, рядом ставится значок разделить: Ι—, и над чертой пишется делитель (число, на которое делят делимое).
- Потом необходимо выделить часть делимого для осуществления деления, если это необходимо в данном случае.
- Далее придется выполнять умножение для того, чтобы определить, сколько раз взять делитель, чтобы получилась выделенная часть делимого. Причем число не должно быть больше 9-ти.
- Выполняете умножение делителя, записываете результат под делимым, а число ≤ 9-ти записываете под черту знака: Ι– разделить.
- Из выбранной части делимого вычитаете результат, записываете его под подчеркиванием, сносите следующую цифру делимого, повторяйте опять процесс умножения, пока не разделите число на число.
Рассмотрим деление в столбик на простом примере:
Если такие двухзначные числа, как 16, 28 можно разделить в уме на 2 или 4 (в первом случае при делении на 2 получится 8 и 14), а во втором (4 и 7), то 51 разделить на 3 без столбика уже сложнее. Как происходит деление в столбик распишем на примере 51 разделить на 3.
Деление в столбик
- Как записывается делимое, делитель уже было сказано, визуально можно посмотреть выше на изображении. Делимое идет первым, потом ставится значок деления и над чертой пишут делитель.
- Теперь определяемся, сколько выделить цифр, чтобы начать подбирать множитель, который записывается под чертой в выделенный квадратик на изображении.
- Выделяем одну цифру 5-ку, она больше 3-ки, на черновике распишите примерно какой подобрать множитель, для того чтобы получить число ≤ 5, наглядно это выглядит так: 5 ≥ 3 · 1, число 1 и есть множитель. Его пишут под чертой делить в квадратике.
- Далее под пятеркой пишем произведение 3 · 1 = 3.
- Теперь вычитаем из 5 — 3 = 2. Разница, в нашем случае 2 должна быть < делителя, в нашем случае 3.
- Итак, остается разделить 21 на 3. Из таблицы умножения вы знаете, что: 21 : 3 = 7.
- Семерку пишут под чертой значка делить после единицы. Ответ получается 17.
Далее рассмотрим пример деления трехзначных чисел:
Давайте разделим трехзначное число 512 на 16. Деление будет происходить по той же схеме, что и двухзначного числа.
Пример деления трехзначного числа
- Запишите делимое, делитель, как на фото выше.
- Далее выделим число 51, и узнайте, сколько раз нужно взять число 16, чтобы получилось произведение меньше или равно 51. Итак, выше представлены расчеты: 16 · 3 = 48 < 51.
- Значит под чертой напишите 3, а под делимым 48. Теперь из 51 вычтите 48, получится 3, сносим следующую цифру 2.
- Подберите множитель к 16, чтобы произведение получилось равное или меньше 32. Итого: 16 · 2 = 32.
- Двойку запишите под черту знака деления, а результат 32 под делимым. Итого 32 — 32 = 0.
- Результат 32.
Рассмотрим деление многозначного числа:
Давайте найдем частное 998190 на 135, пример представлен на изображении ниже. Чтобы решить его, следует подставить нужные числа в пустых клетках.
Пример деления в столбик
- Итак, нужно найти первую цифру, на которое нужно умножить число 135, чтобы получить результат ≤ 998. Для этого понадобится знать отлично таблицу умножения и умение складывать цифры. 135 · 7 = 945.
- Число 945 пишите под делимым, вычтите из 998 — 945 = 53. Это число меньше 135, потому нужно снести еще одну цифру 1, получится 531.
- Высчитываем, какой множитель подойдет, к 135, чтобы получить число меньше, чем 534. Решение: 135 · 3 = 405.
- Вторая цифра под чертой знака деления 3, из 531 — 405 = 126.
- Сносим 9, выходит 1269, подбираем множитель к 135. Результат 135 · 9 = 1215.
- Третья цифра под чертой 9. Теперь: 1269 — 1215 = 54.
- Сносим 0, выходит 540, а 540 = 135 · 4, итого последняя цифра результата это 4.
- Результат 7394.
Деление чисел с нулями:
Обучение делению с остатком
Когда ребенок усвоит материал о делении, можно усложнять задачу. Деление с остатком – это следующая ступень обучения. Объяснять нужно на доступных примерах:
- Предложите ребенку разделить 35 на 8. Запишите в столбик задачу.
- Чтобы ребенку было максимально понятно, можно показать ему таблицу умножения. В таблице наглядно видно, что в число 35 входит 4 раза число 8.
- Запишите под числом 35 число 32.
- Ребенку нужно от 35 вычесть 32. Получится 3. Число 3 является остатком.
Деление с остатком
Простые примеры для ребенка
На этом же примере можно продолжить:
- При делении 35 на 8 получается остаток 3. К остатку нужно дописать 0. При этом после цифры 4 в столбике нужно поставить запятую. Теперь результат будет дробным.
- При делении 30 на 8 получается 3. Эту цифру нужно записать после запятой.
- Теперь нужно под значением 30 написать 24 (результат умножения 8 на 3). В итоге получится 6. К цифре 6 тоже нужно дописать ноль. Получится 60.
- В число 60 помещается цифра 8 входит 7 раз. То есть, получится 56.
- При вычитании 60 от 56 получается 4. К этой цифре тоже нужно подписать 0. Получается 40. В таблице умножения ребенок может увидеть, что 40 – это результат умножения 8 на 5. То есть, в число 40 цифра 8 входит 5 раз. Остатка нет. Ответ выглядит так – 4,375.
Данный пример может показаться ребенку сложным. Поэтому нужно много раз делить значения, у которых будет остаток.
Подготовка в обучению
Для того, чтобы начать объяснять ребенку принцип счета столбиком, Вы должны понять: готов ли он к этому. Обучение должно начинаться только в том случае, если малыш свободно и правильно производит простые арифметические действия с числами от 0 до 10.
Сюда входят сложение, вычитание, деление и умножение (если ребенок не знает одно из приведенных действий, то лучше научите его заранее, ведь «столбик» желательно учить комплексом, т.е. все вариации разбирать вместе)
Важно повторить все перед «стартом», ведь это — самая основа, которую закладывают во 2 — 3 классе.
Не забудьте «разобрать по полочкам» понятие единиц, десятков, сотен и тысяч! Без этого ребенок не сможет наиболее точно понять принцип подсчета и дальше двузначных чисел вы не уйдете.
Здесь отлично подойдет методика, где ученик записывает разные цифры числа под строкой своего разряда. Например: 2312 и 534 — тут получится, что 5 будет под 3, 3 под 1, а 4 под 2, двойка в разряде тысяч будет стоять одна, ведь тысячных частей больше нет.